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Abstract. A myriad of management actions can be applied to reduce anthropogenic pressures on aquatic
environments. Appropriate management actions, whether they be mitigations of contaminant transfer to
receiving environments or interventions within the receiving environments to alter resilience to a contami-
nant, are those which are acceptable to stakeholders and cost-effective and which operate over desired time
frames. The stressor–response relationship describes the change in ecological, social, or economic value of
a receiving environment when impacted by a specific contaminant. Defining a receiving environ-
ment 9 value 9 contaminant system and determining a specific stressor–response relationship for that
system provide valuable decision support strategy to optimize management actions toward a water quality
objective. Here, we outline a potential method for using stressor–response relationships to help identify
the most appropriate management actions for aquatic ecosystems. We use the example of a eutrophic lake
to show how the method can be applied to any receiving environment 9 value 9 contaminant system.

Key words: Escherichia coli; intervention; mitigation; nitrogen; phosphorus; sediment.

Received 9 September 2018; accepted 17 September 2018. Corresponding Editor: Debra P. C. Peters.
Copyright: © 2018 The Authors. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
� E-mail: richard.mcdowell@agresearch.co.nz

INTRODUCTION

Agricultural production, and particularly live-
stock farming, has been linked to the deterioration
of soil and water quality (Steinfield et al. 2006).
Pressures on soil and water can be measured
directly (or via proxies) in the form of concentra-
tions or loads of contaminants such as the fecal
indicator bacterium Escherichia coli, nitrogen (N),
phosphorus (P), and eroded sediment (Muirhead
and Monaghan 2012, Basher 2013, Larned et al.
2016). These contaminants come from a wide vari-
ety of sources including fertilizers (Ledgard et al.
1999), tillage (Withers et al. 2007), and livestock

(Holz 2010). Contaminants are linked to receiving
environments by pathways that include direct
deposition (Miller et al. 2014), eolian erosion and
transport (Li et al. 2004), surface runoff and shal-
low subsurface flow (including interflow, prefer-
ential flow, and artificial drainage; Heeren et al.
2010, Mellander et al. 2016, Monaghan et al.
2016), and groundwater flow (Holman et al. 2010,
Scarsbrook and Melland 2015).
A large number of management actions are in

use, alone and in combination, to reduce the loss
of contaminants from land or lessen their impact
in receiving environments. In this paper, we use
the term mitigations to refer to management
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actions that reduce the loss and transfer of con-
taminants from primary enterprises (i.e., farms,
production forests, orchards, rangelands) to
receiving environments (i.e., lakes, estuaries, riv-
ers, aquifers), and the term interventions to refer
to management actions that increase the resili-
ence (i.e., lessen the impact of contaminants) of
receiving environments to contaminant loads.
We use the term management actions to refer to
mitigations and interventions collectively.

Studies of management actions commonly
assess effectiveness in terms of decreases in con-
taminant load and recently have begun to focus
more on the financial costs or the time required
for a given management action to have maxi-
mum effect (treatment speed; Bailey et al. 2013,
Gooday et al. 2014, Schoumans et al. 2014).
However, costs vary from one jurisdiction to
another due to a range of factors including the
availability of labor, the cost of raw materials,
field or catchment conditions, soil types, and
policies such as incentive schemes or subsidies
(Roberts et al. 2012, Vinten et al. 2017). Further-
more, although proxies such as connectivity
indices exist to indicate the likely response time
of actions, direct evidence of treatment speeds is
sparse (Stieglitz et al. 2003, Leibowitz et al.
2018). As a result, there is a moderate level of
uncertainty among land managers, investors,
and regulators about the relative performance of
different on-farm mitigations and within-receiv-
ing-environment interventions that may be
included in farm and catchment plans and imple-
mented to meet water quality objectives (Payne
and White 2006). Failure to advise on the perfor-
mance (cost, effectiveness, and other factors) of
management actions may lead to some, for
example—farmers, underestimating the adverse
effects of their farming activities on receiving
environments, or paying or doing more than nec-
essary to achieve water quality objectives in
receiving environments (Daigneault et al. 2017).

Among rural land uses, livestock farming has
the greatest range of contaminants and contami-
nant loss pathways due to the grazing of animals
(e.g., discharging microbial pathogens to streams
via excreta) and the wide range of soils and cli-
mates used for livestock farming (Steinfield et al.
2006). Among livestock systems, farms that graze
livestock outside year-round also require a greater
diversity and range of management actions to

reduce contaminant losses from pathways active
in winter and/or summer compared to confined
animal feeding operations that can store manure
and apply it when and where runoff is unlikely or
hybrid farms that only graze for a portion of the
year (Gourley and Weaver 2012, Kirkegaard et al.
2014). Hence, an objective approach is needed to
provide advice on matching management actions
both to farm production systems and to the
assimilative capacities of different receiving envi-
ronments, especially in grazed livestock systems.
Here, we define assimilative capacity as the maxi-
mum contaminant load that can be discharged
into a receiving environment while achieving a
water quality objective (Cairns 1998). Some
farmer- (Payne and White 2006), industry-
(DairyNZ 2015, Dairy Australia 2016), and gov-
ernment-led (Ministry for the Environment and
Ministry for Primary Industries 2015) initiatives
give advice on cost and effectiveness of mitigation
actions. However, none of these initiatives
account for the assimilative capacities of different
receiving environments, and none consider the
benefits of interventions in receiving environ-
ments as alternatives to or in addition to mitiga-
tion actions. This paucity of information about the
interaction between mitigations and interventions
is a major gap in the literature and could result in
overly restrictive regulation on land use practices
to achieve good water quality outcomes in receiv-
ing environments where there exists either a large
assimilative capacity or scope to implement
cost-effective interventions.
In this conceptual paper, we (1) summarize and

assign scores to the costs, effectiveness, and treat-
ment speeds of each of a range of management
actions available for use in countries with large
areas of grazed livestock farming, using Australia
and New Zealand as examples, (2) outline some
of the factors important in minimizing the costs of
these management actions and maximizing their
effectiveness and treatment speeds, (3) propose a
process for assessing environmental impacts of
contaminants in different classes of receiving
environments based on stressor–response rela-
tionships and for scoring the value of a given
response variable, the state of a given stressor,
and the slope of the corresponding stressor–
response curve, and (4) propose a strategy for
selecting effective management actions based on
the assessment of environmental impact in the
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preceding step, and whether the objective for a
receiving environment is to avoid degradation or
initiate recovery. This strategy is intended to help
land managers, investors, and regulators to make
informed decisions such as applying mitigations
to prevent contaminant loads from exceeding
load limits, or proceeding with land use develop-
ments that are acceptable because current contam-
inant loads are below the load limit.

MANAGEMENTACTIONS AVAILABLE FOR
GRAZED LIVESTOCK FARMING

Information was compiled on mitigations and
interventions available in Australia and New
Zealand for grazed livestock farming. Although
there are many potential water quality contami-
nants that originate from land-based activities
(e.g., heavy metals, pesticides), our focus was on
the four contaminants highlighted most often in
policy (Ministry for the Environment 2014) and
by the public (Hughey et al. 2013): nitrogen,
phosphorus, sediment, and E. coli.

In order to provide a consistent approach
across all management actions (Appendix S1:
Tables S1 and S2), we only included actions that
met the following criteria:

1. Data used to define the mean cost and the
range of effectiveness for each action were
available for three or more observations;

2. The mode and speed of treatment were
known;

3. The action was applicable over a wide geo-
graphic range; and

4. Where there was high variability in cost,
effectiveness, or speed of treatment, the rea-
sons for the variability could be accounted
for when assigning the applicability of mea-
sures to different farming systems and
receiving environments.

We evaluated and scored management actions
based on their cost and effectiveness to reduce
each contaminant. Effectiveness was expressed as
a percentage reduction in contaminant loads
retained or reduced through mitigations or immo-
bilized by interventions. Cost was expressed in $
per ha for the target contaminant, but normalized
to a loss of 1 kg of nitrogen, phosphorus, or sedi-
ment, and 1012 coliform-forming units for E. coli.

For the purpose of demonstrating the strategy,
cost and effectiveness of management actions
were grouped into low, medium, or high cate-
gories by dividing cost and effectiveness into
thirds and assigning their mean value scores of 1–
3, respectively. For reference, the range of cost for
each mitigation is given in Appendix S1: Table S1.
Management actions were also categorized and
assigned scores according to their likely treatment
speed as slow (1), moderate (2), and fast (3),
which correspond to time periods required to
achieve maximum effect of >1 yr, <1 yr, and <1
season, respectively. These treatment speed cate-
gories reflect actions that could be incorporated as
part of tactical (day-to-day) or strategic (seasonal
to yearly) management decisions. To implement
the strategy, we derive composite scores as the
product of the individual cost, effectiveness, and
treatment speed scores. This yields a wider range
of possible composite scores than summing the
scores. However, we recognize that the scoring
system may change after testing, when new
actions are developed, or as costs change. We also
recognize that the implementation of manage-
ment actions is context-specific and hence recom-
mend that the array of suitable actions be
confirmed or re-assessed for each application of
the strategy set out below.
An example assessment of cost and effective-

ness is presented for phosphorus mitigations in
Fig. 1, and for nitrogen, sediment, and E. coli in
Appendix S2: Fig. S1. For clarity, both figures
show mitigations, but exclude interventions.
Additional information on mitigations and inter-
ventions, including their treatment speeds, is
given in Appendix S1: Tables S1 and S2.
We only estimated the cost, effectiveness, and

speed of treatment for interventions that were
directly related to contaminant control (e.g.,
removal of bioavailable nitrogen through denitri-
fication, long-term sequestration of phosphorous
in sediments). However, we recognize that other
interventions have indirect effects on contami-
nants by reducing contaminant impact. Exam-
ples of indirect interventions include food-web
biomanipulation (Burns et al. 2014) and removal
of algal proliferations using algicides, sonication,
and flushing flows (Rajasekhar et al. 2012).
Costs for mitigations and interventions for riv-

ers and streams were expressed in dollars per
unit of contaminant contributing area per year
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($/ha of contributing catchment/yr). Because
costs for lake interventions can occur indepen-
dent of the contributing catchment area, costs
were expressed in $/ha of treated lake/yr.

FACTORS TO CONSIDERWHEN CHOOSING
MANAGEMENTACTIONS

Land managers and investors aim for low-cost,
highly effective, and fast management actions to
minimize their environmental footprint and
maintain a social license to operate within a reg-
ulatory framework. Using the scoring system set
out above, this aim can be numerically expressed
as a composite score: low cost (3) 9 highly effi-
cient (3) 9 fast treatment (3) = 27. Graphically,
this aim corresponds to the lower right corner
of Fig. 1. However, there are at least four
exceptions to the assumed aim, when

1. There is a need to reduce contaminant loads
regardless of the cost;

2. There are large maintenance costs for a
given management action;

3. Suitable sites for management actions are
restricted (e.g., by covenants); and

4. There is pressure to use a particular mitiga-
tion or intervention action.

The first two exceptions would encourage the
use of actions located toward the top right of
Fig. 1, while exceptions 3 and 4 would encourage
the use of actions toward the bottom left of
Fig. 1. Beyond these exceptions, there are a
number of other issues relating to cost, effective-
ness, and treatment speed that should be
considered when selecting and optimizing man-
agement actions. These considerations are
explained below.

Fig. 1. The relationship between mean cost and effectiveness of phosphorus mitigation and management
actions along with the likely speed of treatment. A range is given for effectiveness which is largely due to varia-
tion in edaphic conditions, but not for cost where variation is likely to be greater due to factors in addition to
edaphic conditions such as the cost of labor. Composite scores for management actions are calculated as the
product of scores for cost, effectiveness, and speed of treatment classes.
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Applicability
Management actions may be applicable to only

one class of enterprise or receiving environment.
For example, in Australasian grazed livestock
systems, the use of low-rate dairy shed effluent
application to land to mitigate contaminant
losses is generally restricted to dairy farms
(Houlbrooke et al. 2004).

Placement and timing
Targeting mitigation actions to localized critical

source areas, which account for the majority of
contaminant losses, greatly increases their cost-
effectiveness (Doody et al. 2012, Vinten et al.
2017). McDowell (2014) showed that across 14
sub-catchments farmed with sheep, red deer, beef,
or dairy cattle, the cost-effectiveness of mitiga-
tions targeted to critical source areas was six to
seven times higher than untargeted mitigation
actions. The effectiveness and placement of miti-
gations can also be influenced by the interaction
of multiple contaminant flow paths through a
catchment (Cumming 2011). For example, knowl-
edge of denitrification zones could be exploited to
plan where mitigations (e.g., cover crops, crop
rotations, establishment of wetlands) would be
best placed to reach a 20–38% reduction in nitro-
gen load with much greater certainty than apply-
ing actions across the whole catchment an
untargeted manner (Hashemi et al. 2018a, b).

Co-benefits
When implementing management actions,

there may be a tendency to focus on a single con-
taminant, but this neglects the possibility that
some management actions reduce the loss, trans-
port or impact of multiple contaminants (i.e., co-
beneficial management actions). For example,
many of the mitigations that target phosphorus
and sediment losses can also decrease pathogen
loads. Richkus et al. (2016) estimated that actions
put in place to meet the total maximum daily
load in the Chesapeake Bay for phosphorus and
sediment could decrease pathogen load by 19–
27%. Gasper et al. (2012) estimated that these
actions could also play a significant role in
sequestering greenhouse gasses. McDowell et al.
(2017) compared two approaches to mitigating
N and P losses from grazed dairy farms in
four regions of New Zealand: one to target a sin-
gle contaminant with the most cost-effective

measure and a generalized approach that consid-
ered costs, ease of implementation, and their
effectiveness for multiple contaminants. The tar-
geted approach decreased losses of the target
contaminant faster than the generalized appro-
ach, but other contaminants were not reduced.
Targeting single contaminants could jeopardize
water quality and ecosystem health should other
contaminants become important downstream
(McArthur et al. 2010) or over time.

Longevity
It is often desirable to employ management

actions that remain effective over long time
frames. Furthermore, the effectiveness of some
actions decreases with time, especially if the
baseline changes from the legacy of past land use
resulting in a time lag caused by the slow move-
ment of a contaminant through the catchment
(Meals et al. 2010, Meter and Basu 2017), or the
stressor–response relationship changes. For
example, the efficacy of wetlands to remove
phosphorus from flowing waters decreases as
wetlands fill with sediment, or anaerobic condi-
tions develop that remove N via denitrification
desorb sediment-bound phosphorus into the
water column (Ballantine and Tanner 2010).
Changes may also occur due to climatic variabil-
ity, that may induce more frequent and intense
storms that deliver greater contaminant yields
(Ockenden et al. 2016, 2017). Depending on the
magnitude of change, the cost-effectiveness of
actions may be compromised. Indicators, such as
a significant change in the load of contaminant
lost from different land uses should be used as a
trigger to determine whether additional trials are
required to confirm the performance of actions
under a changed climate.

Uncertainties in cost-effectiveness
A poor understanding of contaminant sources

and pathways and impacts of contaminants on
receiving environments increases uncertainty in
estimates of cost-effectiveness of management
actions, which in turn increases uncertainty when
recommending management actions (Wainger
et al. 2013). To accommodate some uncertainty,
but still allow decisions to be made, management
actions should only be implemented when there
is prior evidence of cost-effectiveness under simi-
lar conditions. Further accommodation is made
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by reporting the costs and effectiveness of man-
agement actions as ranges (Gooday et al. 2014,
Geng et al. 2015, Daigneault et al. 2017), which
recognizes that despite having similar conditions,
the performance of a given management action
will vary.

Unintended consequences
The unintended consequences associated with

applying a management action can be signifi-
cant. For instance, the nitrification inhibitor
dicyandiamide (DCD) was used on grazed and
fertilized pastures to mitigate the leaching of
nitrogen from New Zealand soils. However,
DCD can leach from soils to groundwater and
emerge in surface water, where suppression of
nitrification can lead to enriched ammonia con-
centrations (Smith and Schallenberg 2013). In
meeting the bioenergy goals of the United States,
Adusumilli et al. (2014) estimated that significant
increases in erosion and nutrient loading were
likely if pastureland was converted to intensive
biomass production for biofuel. To minimize
unintended consequences, it is important to
increase our knowledge of the potential negative
side effects of management actions.

THE MISSING FACTOR: ACCOUNTING FOR
STRESSOR–RESPONSE RELATIONSHIPS IN
RECEIVING ENVIRONMENTS

Simple stressor–response relationships for
receiving environments can be linear or non-linear,
potentially showing a wide range of sensitivities
or slopes. The state of a stressor variable (along the
x-axis) and the value of a response (along the y-
axis) can both be divided into three classes. An
example of a scoring of a stressor–response rela-
tionship for a class of receiving environment is
shown in Fig. 2. Each value, stressor state, and
sensitivity (slope in the direction of degradation or
recovery) is assigned a score from 1 to 3.
The scoring scale depends on whether the objec-

tive is to (1) avoid or minimize the risk of degrada-
tion in the value of a response variable or (2) to
initiate recovery after degradation has occurred. If
the objective is to avoid degradation, a response
variable most at risk of degradation would have
the greatest score (value score = 3), the stressor
would have the greatest score (state score = 3),
and the stressor–response relationship would
indicate high sensitivity (i.e., a steep slope; sensi-
tivity score = 3), resulting in a composite score of

Fig. 2. Conceptual diagram showing the shape and scoring (1–3) of the value, state, and sensitivity of a stres-
sor–response relationship for a given receiving environment. Scoring for sensitivity is dependent on whether the
aim is to avoid degradation or initiate recovery.
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3 9 3 9 3 = 27. In contrast, a response variable
with the best prospect for recovery would have a
low score (value score = 1), the stressor would
have the lowest score (state score = 1), and the
stressor–response relationship would indicate high
sensitivity (sensitivity score = 1), resulting in a
composite score of 1 9 1 9 1 = 1. Note that the
scale for scoring the sensitivity of the stressor–re-
sponse curve is inverted depending on the objec-
tive (avoid degradation or initiate recovery).

At this stage, there are two composite scores—
one expressing the cost-effectiveness and treat-
ment speed of management actions (Fig. 1), and
another expressing value, state, and sensitivity as
a position on a stressor–response curve for a
receiving environment (Fig. 2). These two com-
posite scores can be used to calculate a benefit

quotient that has the composite score for manage-
ment actions as the numerator and the composite
score for the receiving environment as the denom-
inator. The benefit quotient in turn expresses the
prospect for achieving a management objective
based on a given stressor–response relationship
for a given receiving environment. Thus, the
range of potential values for the benefit quotient
is 1/27 to 27. For management actions, a compos-
ite score close to 27 (e.g., low cost, highly efficient,
and fast treatment) is desired. For a receiving
environment, the composite score to use in the
benefit quotient will depend upon whether the
objective is to avoid (or minimize) the risk of
degradation in the value of a response variable or
to initiate recovery after degradation has
occurred. To minimize the risk of degradation, the

Fig. 3. Photograph showing the extent of a Ceratium sp. bloom on Lake Hayes, Otago, New Zealand, during
the summer of 2015/2016. Photograph used with the permission of Fish and Game, New Zealand.
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best composite score would be 27. Thus, a benefit
quotient of 1 would indicate a good prospect of
the management action achieving the objective of
avoiding degradation. In contrast, to initiate
recovery, the best composite score would be 1.
Thus, a benefit quotient of 27 would indicate a
good prospect of the management action resulting
in a recovery from a degraded state.

APPLICATION OF THE MANAGEMENT STRATEGY

The application of the management strategy
detailed above is summarized in the following steps:

1. A water quality objective is set to avoid
degradation or initiate recovery in the value
of a response variable relative to a single
contaminant or group of contaminants;

2. The appropriate stressor–response curve for
the receiving environment and contaminant
(or group of contaminants) in question is
identified and the current position on the
curve (Fig. 2) assigned a composite score is
calculated as the product of the value, state,
and sensitivity of the system;

3. Management actions are assigned a compos-
ite score for product of their cost, effective-
ness, and treatment speed and their
applicability for local conditions assessed;

4. The benefit quotient is assessed as the quo-
tient of the composite score of actions over
the composite score for the receiving envi-
ronment and each action ranked against a
stakeholder’s ability to implement actions
after accounting for factors outlined in sec-
tion 2 such as timing, placement, longevity,
co-benefits, and unintended consequences.
Advice is also given on how to monitor the
performance of the management actions in
terms of achieving their objective.

As an example, we show how the strategy could
be applied to Lake Hayes, Otago, New Zealand.
The lake (surface area = 270 ha, maximum depth
31 m) lies in a small catchment dominated by
sheep and red deer farming (Caruso 2001). Begin-
ning in the late 1960s, the lake has suffered regu-
lar, severe, summer phytoplankton blooms, due to
phosphorus enrichment (Fig. 3), but these have
not developed in two of the last seven summers. It

Fig. 4. Conceptual diagram showing the overlap shape of cost and effectiveness (speed of treatment not
shown) of management actions and the stressor–response curve for phosphorus and phytoplankton in Lake
Hayes (Otago, New Zealand) showing the scoring of value, state, and sensitivity of the lake in 2017 and at a point
in the future where progress toward the objective of recovering the lake is being achieved.
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has been suggested that the lake is approaching a
nutrient recovery threshold characterized by a
logistic relationship (Fig. 4) between phytoplank-
ton biomass and nutrient loading (Schallenberg
and Schallenberg 2017). If no relationship was
available for the lake, it would be reasonable to
forecast a likely trajectory or use a relationship for
a similar type of receiving environment. Forecast-
ing the trajectories of relationships is a rapidly
growing area of research (Flynn et al. 2015,
Petchey et al. 2015, Dietze et al. 2018).

In step 1, we assessed that the lake was a good
candidate for treatment given its current position
on the stressor–response curve and define a hypo-
thetical objective to ensure recovery by reducing
phosphorus loading and phytoplankton growth.
In step 2, the composite score (1) for the receiving
environment was calculated as the product of a
lake in poor state (score = 1), of low value

(score = 1), but sensitive to small changes in phos-
phorus loading (score = 1). In step 3, composite
scores were given for the cost, effectiveness, and
speed of treatment of potential management
actions identified according to their applicability
for local conditions (3–27; Table 1). The final step
saw benefit quotients generated for the use of miti-
gation and intervention actions in the lake that
ranged from 3 to 18 and 6 to 18, respectively.
Before implementing actions, additional informa-
tion would be given to stakeholders on where to
monitor P loads in the catchment and phytoplank-
ton in the lake to ensure that the management
actions were working, and on how those actions
would be influenced by factors in section 2 such as
longevity (including climate change) and uncer-
tainties. The benefit quotients and additional infor-
mation inform decisions on which management
actions will achieve the best cost, effectiveness,

Table 1. Name, description, score, and benefit quotient of suitable interventions and mitigation actions (from
Appendix S1: Tables S1 and S2) in recovering Lake Hayes in 2017 and, in parentheses, at a point in the future.

Suitable action Description
Action
score

Initial and (future)
benefit quotient

Mitigations
Stream fencing Preventing livestock access to stream decreases stream bank

damage (and sediment inputs via bank erosion) bed
disturbance of sediments (and entrained E. coli, N, and P)
and stops the direct deposition of excreta into streams

27 27 (1.5)

Restricted grazing of
forage crops

Restricted grazing of a forage crop in winter to reduce
deposition of excreta and surface erosion by grazing animals

18 18 (1)

Alum to pasture P-sorbing aluminum sulfate (alum) sprayed onto pasture a
week before grazing to prevent subsequent surface runoff
losses of P

12 12 (0.67)

Alum to grazed forage
crops

P-sorbing aluminum sulfate (alum) sprayed onto a winter
forage crop just after grazing to prevent surface runoff losses
of P

12 12 (0.67)

Optimum soil test
phosphorus
concentration

Matching soil Olsen P concentrations to pasture and forage
crop requirements avoids enriched soil P concentrations that
are more likely to lose more P in runoff compared to that at
an agronomic optimum concentration

3–9 3–9 (0.16–0.5)

Preventing fence-line
pacing

Tree planting to provide shelter and maintaining sufficient
feed to avoid stress when, for example, when feed is low or
near calving

6 6 (0.33)

Vegetated buffer strips Vegetated buffer strips work to decrease contaminant loss in
surface runoff by a combination of filtration, deposition, and
improving infiltration

6 6 (0.33)

Sediment traps In-stream traps allow coarse-sized sediment and associated N
and P to settle out

3 3 (0.16)

Interventions
Phosphorus inactivation
or flocculation

Chemicals such as alum (aluminum sulfate) can “lock up”
dissolved phosphorus in lakes via adsorption and
precipitation processes

18 18 (1)

Lake hydraulic flushing Reduce natural residence time, reduce internal loading, and
increase throughput of nutrients and sediment

6–18 6–18 (0.33–1)

Aeration, oxygenation,
and destratification

Air/O2 pumped to the bottom of lakes to destratify lakes and
prevent P release under reducing conditions

9 9 (0.5)
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and treatment speed according to the stressor–re-
sponse curve’s indication of state, value, and sensi-
tivity of the lake. If the objective had been to avoid
degradation, with the lake being scored in the top
left sector of Fig. 4, the composite score would
have been 9 (low phytoplankton concentration [3],
low P loading [3], and flat sensitivity [1]). Benefit
quotients would range from 0.33 to 3, but the
order of actions would be the same as per the
objective of initiating recovery. However, let us
also consider a case in the future where the lake is
scored along the same stressor–response curve as
having high value (score = 3), acceptable state
(score = 2), but still highly sensitive (score = 3).
Under the objective of initiating recovery, the com-
posite score for the lake would be 18. Applicable
management actions would yield benefit quotients
for mitigation and intervention ranging from 0.06
to 1 and 0.33 to 1, respectively. These benefit quo-
tients indicate that there is less incentive for pursu-
ing actions for further recovery, but highlight
those actions that should be maintained should
the objective shift to avoiding degradation.

CONCLUSIONS

We provide a simple method to score the costs,
effectiveness, and treatment speeds of manage-
ment actions used to mitigate the loss of water
quality contaminants from land or to lessen their
impacts in receiving environments. Following the
identification of a stressor–response curve for a
receiving environment, a similar method is used
to assign a composite score to the value of the
response variable, the state of the stressor, and the
sensitivity of the stressor–response relationship.
Once a water quality objective has been set to ini-
tiate recovery or avoid degradation of a response
variable, dividing the composite scores for poten-
tial management actions by the composite score
for the receiving environment (based on its stres-
sor–response curve) yields a benefit quotient that
identifies management actions that can best
achieve the objective. Along with additional infor-
mation about the suitability and longevity of
management actions, the benefit quotient can be
used to prioritize management actions, enhance
the creation and implementation of catchment
plans, and along with monitoring of response
variables—gauge progress to improve water
quality while maintaining primary productivity.
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